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Abstract:

We will describe a low cost and low power Si Bipolar IC
for clock and data recovery at 2.488 Gb/s that requires no ex-
ternal reference. The design is based on a digital quadri-corre-
lator that has inherent low phase offset and allows the use of
passive loop filters. The clock recovery unit (CRU) has broad
locking range that makes it robust against power supply and
temperature variations.

Introduction

Using a 14 GHz Si bipolar process we have integrated a
CRU for the Synchronous Optical Network (SONET) commu-
nication standard OC-48 (optical carrier at 48 times base fre-
quency). Our IC consumes a modest 0.8 W while performing
the functions of recovery, re-timing and lock detection. It is
based on a phase-locked loop (PLL) which contains a digital
frequency and phase detector (DFPD), known as a digital
quadri- correlator, that can extract the information from the in-
coming data without requiring an external clock reference for
frequency acquisition.

Figure 1: Optical data transmission system
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System overview

Shown in Fig. 1 is a simplified overview of an optical fiber
data communications system. The transmitter needs to origi-
nate the data at high serial rate (for example 2.488 Gb/s) and
consists of a multiplexor and a PLL used for synthesis. The re-
ceiver must recover the clock, re-time the data and de multi-
plex it [1,2]. Additionally, systems use many repeaters, which
consist of optical interfaces and clock recovery and data re-
timing. The specifications for the repeater are the most diffi-
cult since they must balance not only transfer, tolerance and
generation of jitter, but limited power consumption and robust
design against environmental changes in voltage supply and
temperature.

IC block description

A simplified IC block diagram is shown in Fig. 2. The in-
coming data is compared against the internal voltage con-
trolled oscillator (VCO) in the DFPD. Its output is
differentially filtered and applied to the oscillator. The refer-
ence input is required only for the lock detector, where it is
compared against the VCO divided by 16. The data is re-timed
by a d-flip-flop, using the inverted in phase VCO clock output.
This CRU consists of fewer building blocks than one that re-
quires a reference and a dual-loop PLL.

Figure 2: CRU Block Diagram
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Voltage Controlled Oscillator

Our VCO, a two stage ring oscillator, is shown in Fig. 3. It
consists of a slow and a fast amplifiers that are parallel con-
nected. Their “tail” current is controlled by a third differential
amplifier. When this current is divided between the slow and
fast amplifiers, a middle delay is obtained. Emitter followers
isolate, buffer and speed up the oscillator stages. The tuning
range of our VCO is from 2.3 to 2.7 GHz, and it provides
quadrature outputs (90 degrees out of phase). These outputs are
required for the digital quadri-correlator.

Digital Quadri-correlator

The digital quadri-correlator (or DFPD), shown in Fig. 4,
consists of 2 dual-edge triggered flip-flops, logic circuitry for
determining relative frequency, and summing circuitry that
produces control signals for VCO. In-phase and quadrature
output of VCO are sampled on the rising and falling edges of
the data signal to produce the signals Q1 and Q2. By observing
the relative phase of Q1 and Q2, Q3 is derived and it indicates
the relative frequency of VCO compared to the DATA signal.
Control signals for VCO are generated subsequently from the
summing circuitry [3, 4]. Once in locked condition, Q1 oper-
ates in a “bang-bang” mode as a phase detector, while Q2 re-
mains low indicating inactivity of the frequency loop. Lock
detection is indicated by Q2, and, therefore, a separate lock de-
tection circuitry is not required in principle.

Figure 3: Two stage ring-oscillator VCO.
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Loop design

The loop filter is entirely passive consisting only of resis-
tors and capacitors, and it requires no op-amp. It is fully inte-
grated except for one external chip capacitor. The inherent low
phase offset of the DFPD, due to the high gain of the "bang-
bang" phase detector, allows this simple filter which consumes
less power and provides better loop stability since no higher or-
der poles exist as when an op-amp is used.

 Heavily damped loop response is desired in order to keep
the peaking in the pass-band to less than 0.1 dB as required in
the OC-48 specification. The loop bandwidth of a heavily
damped system is proportional to the open loop gain. The gain
of the VCO tends to be large, in order to have enough tuning
range for a given range of control voltage. The high VCO gain
will, unfortunately, make the loop bandwidth too wide. This
situation is further compounded by the "bang-bang" phase de-
tector which has large gain itself. Hence, a network of resistor
divider and a large 1uF external capacitor are used to reduce the
gain of the AC component of the control voltage before it is ap-
plied to the VCO. The resistor divider network is designed to
make the loop response stable with 3 dB frequency of about 1.1
MHz.

A behavioral model in the phase domain, shown in Fig. 5,
is extensively used to verify the stability of the PLL. Although
the model is single ended and the circuit is actually implement-
ed in a differential architecture, it should be equivalent in terms
of predicting the loop stability. Controlled sources are used to
model the phase detector and the VCO. The "bang-bang" char-
acteristic of these PFDs are highly non-linear. However, the
simplified circuit shown could be used by adjusting the gain
and the clamp level of KP. To verify the large signal loop band-
width (i.e., jitter tolerance), we run transient analysis with sinu-
soidal inputs of varying amplitude and frequency. KV models
the gain of the VCO. A 1 ohm resistor and a 1 F capacitor sim-

Figure 4: Digital Frequency and Phase Detector.
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ulate an ideal integrator which is needed to model the VCO in
the phase domain.

Lock Detector

 The lock detector shown in Fig. 6 works as a relative fre-
quency measuring system. It determines if an optional refer-
ence and the internally divided down VCO are different by
more than a preset percentage. The basis of its operation is the
generation of a beat frequency between the two inputs, by the
use of two flip-flops. This beat signal enables a counter that
counts either the reference or the VCO divided by 16. If the two
inputs are close in frequency, then a high count will occur dur-
ing the beat signal high state. Then the counter will “carry” and
disarm a trip point set by the beginning of the beat waveform.

Input and Output Buffers

At the operating frequency of the circuit, integrity of input
and output signals may easily be compromised by package and
bonding inductance. Thus, input and output buffers are inter-
nally terminated with on chip 50 ohm resistors to minimize

Figure 5: Simplified loop stability model

Figure 6: Lock Detector.
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ringing caused by reflections. Input buffers are also internally
self biased to accommodate AC coupling. Output buffers are
open collector with internal load, and can provide 300mV DC
swing into external 50 ohm load. The current densities in the
emitter follower stages prior to output buffers are adjusted in
order to reduce ringing [5].

Test set-up

The ICs were packaged in a plastic thin quad flat package
(TQFP) to minimize the lead inductances at the outputs, the
loop filter external pins and the power buses. A rough estimate
of inductance for our package is 5 nH per pin. The effect of this
uncontrolled “impedance” is lessened by using inputs and out-
puts that are 50 ohm terminated on-chip.

The evaluation board had to be carefully designed. Several
iterations of both two layer and four layer boards have been
necessary to optimize the output waveforms for the data (2.5
Gb/s) and the clock (2.5 GHz). It is easy to handle these fre-
quencies inside the chip, but difficult to cross the package bar-
rier. Therefore it may be desirable, in the future, to not bring
them out but rather to do de-multiplexing on chip.

The measurement of SONET specifications requires the
use of special test equipment designed for this purpose, com-
monly known as bit-error-rate-tester (BERT). It is capable of
injecting data with different pseudo random patterns with vary-
ing amounts of jitter, and to verify the correctness of the recov-
ered data and the amounts of jitter present at the output.

Measured Performance

Table 1 below summarizes the measured performance of
the clock and data recovery IC. The jitter generated by our IC

Table 1: Summary of measured performance parameters

Specification or parameter Measured Value

Jitter generation 2.9 pS rms

Jitter transfer peaking < 0.03 dB
3 dB corner 1.1 MHz

Jitter tolerance Meets with 25% overdrive

Lock range 2.4 -2.6 GHz

Operating temperature -40 to +85 C (industrial)

Operating voltage 4.75 to 5.25 V

Power consumption 0.8 W
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is typically about 2.9 pS rms, and this meets the SONET spec-
ification of 4 pS rms [2]. The jitter transfer specification mea-
sures the input to output transfer function of the part, and is
equal to one (with less that 0.1 dB peaking) up to a maximum
band edge frequency. Fig. 7 shows the jitter transfer at typical
conditions. We also pass the jitter tolerance with more than

25% overdrive. This measures the ability of the CRU to with-
stand decreasing amounts of jitter at increasing (jitter) frequen-
cies. The units are in “unit interval” or UI, which is 400 pS for
2.5 Gb/s. For example, at 1 kHz the test equipment applies
4000 pS or 10 UI of jitter. The jitter tolerance plot shows, in
squares, the jitter levels versus frequency at which the IC was
tested and passed with no data errors. The tests are run with a
pseudo random data pattern of length 127, but data integrity is
checked for patterns up to 2 billion bits long.

The IC layout is shown in Fig. 8 and its size is 2.5 mm by
2.5 mm. MIM capacitors are used extensively for both loop fil-
tering and for power supply decoupling. The analog portion of
the circuit is separated from the digital by large substrate con-
tacts tied to quiet power supply pads. We have plenty of power
and ground pins, and we maintain separate buses for the ana-
log, digital and output circuits.

Conclusion

An unaided low power and low cost clock and data recov-
ery circuit for SONET OC-48 applications has been presented.
The circuit is implemented in 14GHz bipolar process with
three levels of metal. A simple passive filter is used which re-
duces power consumption and improves the loop stability.

Figure 7: Jitter transfer response
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Figure 8: CRU chip plot.
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